Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276503

ABSTRACT

Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.

2.
Vaccines (Basel) ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376436

ABSTRACT

A highly effective humoral immune response induced by the Sputnik V vaccine was demonstrated in independent studies, as well as in large-scale post-vaccination follow-up studies. However, the shifts in the cell-mediated immunity induced by Sputnik V vaccination are still under investigation. This study was aimed at estimating the impact of Sputnik V on activating and inhibitory receptors, activation and proliferative senescence markers in NK and T lymphocytes. The effects of Sputnik V were evaluated by the comparison of PBMC samples prior to vaccination, and then three days and three weeks following the second (boost) dose. The prime-boost format of Sputnik V vaccination induced a contraction in the T cell fraction of senescent CD57+ cells and a decrease in HLA-DR-expressing T cells. The proportion of NKG2A+ T cells was down-regulated after vaccination, whereas the PD-1 level was not affected significantly. A temporal increase in activation levels of NK cells and NKT-like cells was recorded, dependent on whether the individuals had COVID-19 prior to vaccination. A short-term elevation of the activating NKG2D and CD16 was observed in NK cells. Overall, the findings of the study are in favor of the Sputnik V vaccine not provoking a dramatic phenotypic rearrangement in T and NK cells, although it induces their slight temporal non-specific activation.

3.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240393

ABSTRACT

The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , COVID-19/metabolism , T-Lymphocyte Subsets , Killer Cells, Natural , Cell Differentiation
4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768315

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.


Subject(s)
COVID-19 , Humans , Cytokines , SARS-CoV-2 , NK Cell Lectin-Like Receptor Subfamily K , Programmed Cell Death 1 Receptor , Killer Cells, Natural
5.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454081

ABSTRACT

Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients' PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.


Subject(s)
HSP70 Heat-Shock Proteins , Parkinson Disease , Autophagy/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proteostasis
6.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884936

ABSTRACT

Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson's disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56- T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56- T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.


Subject(s)
Cytomegalovirus Infections/blood , Lymphocyte Subsets/immunology , Parkinson Disease/immunology , Parkinson Disease/virology , Age Factors , Aged , CD56 Antigen/metabolism , CD57 Antigens/metabolism , Case-Control Studies , Cell Differentiation , Cytomegalovirus Infections/immunology , Female , Humans , Immunosenescence , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Leukocytes, Mononuclear/immunology , Lymphocyte Count , Lymphocyte Subsets/virology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Parkinson Disease/blood
7.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948123

ABSTRACT

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation , Gene Expression Regulation , Genetic Vectors , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily C/biosynthesis , Receptors, KIR2DL2/biosynthesis , Receptors, KIR2DL3/biosynthesis , Retroviridae , Transduction, Genetic , Cell Death , Humans , K562 Cells , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C/genetics , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics
8.
Int J Mol Sci ; 18(12)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29211044

ABSTRACT

Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common age-related neurodegenerative disorders. Both diseases are characterized by chronic inflammation in the brain-neuroinflammation. The first signs of PD and AD are most often manifested in old age, in which the immune system is usually characterized by chronic inflammation, so-called "inflammaging" In recent years, there is growing evidence that pathogenesis of these diseases is connected with both regional and peripheral immune processes. Currently, the association of clinical signs of PD and AD with different characteristics of patient immune status is actively being researched. In this mini-review we compare the association of PD and AD alterations of a number of immune system parameters connected with the process of inflammation.


Subject(s)
Alzheimer Disease/blood , Cytokines/blood , Parkinson Disease/blood , Alzheimer Disease/immunology , Biomarkers/blood , HSP70 Heat-Shock Proteins/blood , Humans , Inflammation/blood , Inflammation/immunology , Oxidative Stress , Parkinson Disease/immunology
9.
Cell Stress Chaperones ; 22(1): 67-76, 2017 01.
Article in English | MEDLINE | ID: mdl-27783273

ABSTRACT

Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Adult , Aged , Female , Granulocytes/cytology , Granulocytes/metabolism , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Humans , Leukocytes, Mononuclear/cytology , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Temperature , Transcription, Genetic , Young Adult
10.
Nanotechnology ; 26(4): 045601, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25556693

ABSTRACT

Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)(3/4+)-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)(3/4+)-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)(3/4+)-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)(3/4+)-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.


Subject(s)
Biocompatible Materials/chemical synthesis , Magnetite Nanoparticles/chemistry , Serum Albumin/chemistry , Cations , Contrast Media/chemical synthesis , Humans , Magnetite Nanoparticles/toxicity , Materials Testing
11.
Oncotarget ; 5(23): 11800-12, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25514461

ABSTRACT

ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.


Subject(s)
Aging/metabolism , HSP70 Heat-Shock Proteins/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Adult , Aged , Aged, 80 and over , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...